Exercise 64

To prove that sine is continuous, we need to show that $\lim _{x \rightarrow a} \sin x=\sin a$ for every real number a. By Exercise 63 an equivalent statement is that

$$
\lim _{h \rightarrow 0} \sin (a+h)=\sin a
$$

Use (6) to show that this is true.

Solution

Start with the identity,

$$
\sin a=\sin a
$$

Rewrite the left side.

$$
(\sin a) \cdot 1+(\cos a) \cdot 0=\sin a
$$

Use the formulas in (6) on page 119.

$$
(\sin a) \cdot \lim _{h \rightarrow 0} \cos h+(\cos a) \cdot \lim _{h \rightarrow 0} \sin h=\sin a
$$

$\sin a$ and $\cos a$ are constants and can be brought inside the respective limits.

$$
\lim _{h \rightarrow 0} \sin a \cos h+\lim _{h \rightarrow 0} \cos a \sin h=\sin a
$$

The limit of a sum is the sum of the limits.

$$
\lim _{h \rightarrow 0}(\sin a \cos h+\cos a \sin h)=\sin a
$$

Use the angle addition formula for sine.

$$
\lim _{h \rightarrow 0} \sin (h+a)=\sin a
$$

Therefore, sine is a continuous function.

